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Review:
Definition (Groups)
A group is a nonempty set G with a binary operation
∗ : G×G! G,(x, y) 7! x ∗ y satisfying the following conditions:

1. G is associative: (a ∗ b) ∗ c = a ∗ (b ∗ c), ∀a, b, c ∈ G.

2. There is an element e in G such that a ∗ e = a and
e ∗ a = a, ∀a ∈ G.

3. ∀a ∈ G, ∃a−1 ∈ G such that a ∗ a−1 = e and a−1 ∗ a = e.
If G be a group but it is also commutative i.e.,
∀a, b ∈ G, a ∗ b = b ∗ a, that is called Abelian group.

Definition (Subgroups)
Let G be a group and H a nonempty subset of G i.e.,

∅ ̸= H ≤ G ⇐⇒

{
h1h2 ∈ H

h−1
1 ∈ H

, ∀h1, h2 ∈ H

⇐⇒∀h1, h2 ∈ H, h1h
−1
2 ∈ H
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Definition (Order of Groups and elements)
Let G be a group. A number of elements in G is called the order of G
and denoted by |G|. When G is infinite, we write |G| = ∞. Let x ∈ G
and n ∈ N. We denote
xn = x · x · x · · ·x (n times of x)

x−n = (x−1)n = x−1 · x−1 · x−1 · · ·x−1 (n time of x−1)

x0 = e
The smallest positive integer n such that xn = e is called the order of
the element x in G and denoted by |x| = n. If no such integer exists,
we say that x has infinite order and denoted by |x| = ∞.

Definition (cyclic group)
Let G be a group. G is a cyclic group if there exists x ∈ G such that
G = ⟨x⟩. The group ⟨x⟩ is called the group generated by x and x is
called the generator of ⟨x⟩.
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Example
We give some examples of groups.

I. Infinite Groups
1. Matrix groups: GLn(C),GLn(R), SO(n),U(n) and SU(n), ... with

multiplication operation.
2. (Z,+), (Q,+), (R,+), (C,+) are abelian group.
3. (SX , ◦), SX = {f : X ! X,X ̸= ∅|f is bijective} is called

permutation groups.
II. Finite Groups

1. Zn = {0, 1, 2, 3, · · · , n− 1} with addition operation modulo n.
2. Z×

n = {m ∈ Zn|(m,n) = 1} with multiplication operation modulo n.
Example: Z×

8 = {1, 3, 5, 7}
3. G = {1,−1, i,−i} is a group under usual multiplication of complex

number and it is an abelian group.
4. If the set X = {1, 2, ..., n} we denote Sn is symmetric groups.
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Operation Table of Groups

Table of Z×
8

× 1 3 5 7
1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1

Table of (G,×)
× 1 −1 i −i
1 1 −1 i −i
−1 −1 1 −i i
i i −i −1 1
−i −i i 1 −1

Table of Z4

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2
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Table of Z4

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Table of G after changing
order of element
× 1 i −1 −i
1 1 i −1 −i
i i −1 −i 1
−1 −1 −i 1 i
−i −i 1 i −1

By transformation
0 ! 1, 1 ! i, 2 ! −1 and 3 ! −i.
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Remark: We cannot use table of operations to check whether two groups
are the same or not.
Now consider:

•

•

•

G1

•

•

•

•

G2

G1 can not be the same as G2 since card(G1) ̸= card(G2).
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Consider if card(G1) = card(G2), then

•

•

•

•

G1

•

•

•

•

G2

f

1. There exists f : G1 ! G2 such that f is bijective.
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a

b

ab

f(a)

f(b)

f(a)f(b)

G1 G2

f

f

f

2. ∀a, b ∈ G, f(ab) = f(a)f(b).
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Definition (isomorphism groups)
Let G1 and G2 be two groups. We say that G1 is isomorphic to G2

there exists a function f : G1 −! G2 which satisfies:
1. f is bijection.
2. f preserves operator, that is f(ab) = f(a)f(b) for any a, b ∈ G.

We symbolize this fact by writing,

G1
∼= G2 or G1 ≈ G2.
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1. Any infinite cyclic group is isomorphic to Z.

Proof.
Let G = ⟨x⟩ where |x| = ∞.
Consider the map f : G! Z given by xn 7! n where n ∈ Z.
This map is well-defined and injective since for any xm, xn ∈ G

xm = xn ⇐⇒ m = n

where m,n ∈ Z.
Now f is surjective since for any n ∈ Z, ∃xn ∈ G such that f(xn) = n.
And f is operation preserving since for any xm, xn ∈ G, we have

f(xmxn) = f(xm+n) = m+ n = f(xm) + f(xn).
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2. Any finite cyclic group ⟨x⟩ such that card(⟨x⟩) = n is isomorphic to
Zn.
Proof: Let G = ⟨x⟩ where |x| = n.
Consider the map f : G −! Zn given by

f(xp) = p mod n

where p ∈ Z.
Now f is injective since ∀p, q ∈ Z

p( mod n) = q( mod n) ⇐⇒ xp = xq.

And f is surjective since ∀p( mod n) ∈ Zn, ∃xp ∈ G such that f(xp) = p
mod n.
Furthermore f preserve group operation: Let xp, xq ∈ G then
f(xpxq) = f(xp+q)

= (p+ q) mod n

= (p mod n) + (q mod n)

= f(xp) + f(xq)
Therefore, G ∼= Zn.
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How does one recognize if two groups are
isomorphic to each other?

1 Make a smart guess on a function f : G1 −! G2 which might be an
isomorphism.

2 Check that f is injective and surjective, that is bijective.
3 Check that f satisfies the preserve operation f(ab) = f(a)f(b).
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How does one recognize when two groups are
not isomorphic to each other?

Show that two groups G1 and G2 are not isomorphic by observing:
card(G1) ̸= card(G2)
|G1| ̸= |G2|
G1 is cyclic but G2 is not.
G1 is abelian but G2 is not.
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Theorem
Every group is isomorphic to a group of permutations.

Proof: Let G be an arbitrary group. Consider the permutation group SG

and for each g ∈ G, we define a map

fg : G! G

x 7! gx

First, observe that fg ∈ SG for all g ∈ G. Indeed,

fg(x) = fg(y) ⇐⇒ gx = gy ⇐⇒ x = y, ∀x, y ∈ G.

∀y ∈ G, ∃x = g−1y ∈ G, fg(x) = fg(g
−1y) = gg−1y = y.

In addition, the set G := {fg|g ∈ G} is a subgroup of SG since for any
g1, g2 ∈ G and x ∈ G, we have

(fg1 ◦ fg2) (x) = fg1(g2x) = g1g2x = fg1g2(x) ⇐⇒ fg1 ◦fg2 = fg1g2 ∈ G.

fg1 ◦ fg−1
1

(x) = fg1(g
−1
1 x) = g1g

−1
1 x = x.
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⇐⇒ fg1 ◦ f−1
g1 = Id ⇐⇒ f−1

g1 = fg−1
1

∈ G.

We will prove that G ∼= G. Consider a map:
f : G! G

g 7! fg

This map is well-defined and injective.
Let g1, g2 ∈ G,

g1 = g1 ⇐⇒ g1x = g2x, ∀x ∈ G ⇐⇒ fg1 = fg2

Now f is clearly surjective because ∀y ∈ G, ∃x = g−1y ∈ G such that

fg(x) = fg(g
−1y) = gg−1y = y.

And f preserves the operation: for any g1, g2 ∈ G, we have

f(g1g2) = fg1g2 = fg1 ◦ fg2 = f(g1) ◦ f(g2).

Therefore,
G ∼= G ≤ SG.
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Properties of Isomorphism Acting on Elements

Theorem
Suppose that f is an isomorphism from a group G onto a group G.

1 f carries the identity of G to the identity of G.
2 For every integer n and for every group element a in G,

f(an) = [f(a)]n.
3 For any element a and b in G, a and b commute if and only if f(a)

and f(b) commute.
4 G = ⟨a⟩ if and only if G = ⟨f(a)⟩.
5 |a| = |f(a)| for all a in G (isomorphism preserves orders).
6 For a fixed integer k and a fixed group element b in G, the equation

xk = b has the same numbers of solutions in G as does the equation
xk = f(b) in G.

7 If G is finite, then G and G have exactly the same number of
elements of every order.
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Properties of Isomorphism Acting on Groups

Theorem
Suppose that f is an isomorphism from a group G onto a group G.

1 f−1 is an isomorphism from G onto G.
2 G is abelian if and only if G is abelian.
3 G is cyclic if and only if G is cyclic.
4 If K is a subgroup of G, then f(K) = {f(k)|k ∈ K} is a subgroup

of G.
5 f(Z(G)) = Z(G) where Z(G) denotes the center of the group G.

Note: Z(G) = {x ∈ G|xg = gx, ∀g ∈ G}.
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In mathematics
1 Studying abstract groups via isomorphisms with

simple/familiar/readable groups.
Example: Suppose V is vector space on R and finite-dimensional.
Let G = {T : V ! V |T is bijective, T, T−1 is linear}.
Let T : R3 ! R3 be the linear transformation defined by

T

x1

x2

x3

 =

 x1 + 3x2 − x3

3x1 − x2 + 4x3

2x1 − 4x2 + x3


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We get

T ◦ T

x1

x2

x3

 = T

 x1 + 3x2 − x3

3x1 − x2 + 4x3

2x1 − 4x2 + x3


=

 x1 + 3x2 − x3 + 3(3x1 − x2 + 4x3)− (2x1 − 4x2 + x3)
3(x1 + 3x2 − x3)− (3x1 − x2 + 4x3) + 4(2x1 − 4x2 + x3)
2(x1 + 3x2 − x3)− 4(3x1 − x2 + 4x3) + (2x1 − 4x2 + x3)

 .

We must instead again, it is too hard. But we can find T ◦ T

x1

x2

x3

 by

using multiplication of matrix.

T (x) =

1 3 −1
3 −1 4
2 −4 1

x1

x2

x3


Then T (T (x)) =

1 3 −1
3 −1 4
2 −4 1

1 3 −1
3 −1 4
2 −4 1

 = T ◦ T .
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Mathematics is the art of giving the same name to different things.
Henri Poincaré (1854-1912)

The basis for poetry and scientific discovery is the ability to comprehend
the unlike in the like and the like in the unlike.

Jacob Bronowski
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Q & A !
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