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Group Isomorphisms



Review:

DEFINITION (GROUPS)

A group is a nonempty set G with a binary operation
x: G X G — G,(z,y) — x * y satisfying the following conditions:

1. G is associative: (a*xb)*xc=ax* (bxc), Va,b,cé€QG.




Review:

DEFINITION (GROUPS)

A group is a nonempty set G with a binary operation
x: G X G — G,(z,y) — x * y satisfying the following conditions:

2. There is an element e in G such that a x e = a and
exa=a, VYacgG.
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Review:

DEFINITION (GROUPS)

A group is a nonempty set G with a binary operation
x: G X G — G,(z,y) — x * y satisfying the following conditions:

3. Vae G,3a~ ' € Gsuchthataxa ' =eanda 'xa=e.
If G be a group but it is also commutative i.e.,
Va,b € G, axb="bxa, that is called Abelian group.
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Review:

DEFINITION (GROUPS)

A group is a nonempty set G with a binary operation
x: G X G — G,(z,y) — x * y satisfying the following conditions:

DEFINITION (SUBGROUPS)

Let G be a group and H a nonempty subset of G i.e.,
hiho, € H
hi'e H
“=Vhi,hy € H, hhy' € H

@;AHSCH:»{ ,Vhi,ho € H




DEFINITION (ORDER OF GROUPS AND ELEMENTS)

Let G be a group. A number of elements in G is called the order of G
and denoted by |G|. When G is infinite, we write |G| = co. Let x € G
and n € N. We denote

a2 =xz-x-x---x (ntimes of x)

z=@ )" =zt 27 .27 .27l (ntimeof 271

.13026

The smallest positive integer n such that ™ = e is called the order of
the element z in G and denoted by || = n. If no such integer exists,
we say that z has infinite order and denoted by |z| = cc.

.

DEFINITION (CYCLIC GROUP)

Let G be a group. G is a cyclic group if there exists € GG such that
G = (z). The group (x) is called the group generated by = and z is
called the generator of (x).
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We give some examples of groups.
I. Infinite Groups
1. Matrix groups: GL,(C), GL,(R),SO(n), U(n) and SU(n), ... with
multiplication operation.
2. (Z,4),(Q,+), (R,+), (C,+) are abelian group.
3. (Sx,0),Sx ={f: X — X, X # o|f is bijective} is called
permutation groups.
II. Finite Groups
1. Z, ={0,1,2,3,--- ,n — 1} with addition operation modulo n.
2. Zy = {m € Zy|(m,n) = 1} with multiplication operation modulo n.
Example: 23 = {1,3,5,7}
3. G={1,-1,4,—i} is a group under usual multiplication of complex
number and it is an abelian group.

4. If the set X = {1,2,...,n} we denote S,, is symmetric groups.




GROUP IsoM:

OPERATION TABLE OF GROUPS

e Table of Z§ @ Table of (G, x)

x|1 3 5 7 x |1 -1 i —i
111 3 5 7 1 1 -1 1 —1
313 1 7 5 -1/-1 1 —i 1
515 7 1 3 1 1 - -1 1
7|17 5 3 1 —1 | —t 1 1 -1

Table of Z4

+]0 1 2 3

o0 1 2 3

111 2 3 0

212 3 0 1

313 0 1 2
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Table of G after changing

Table of Z4

—|—‘O 1 2 3 orderofelemen ‘
R
IR INEEE
sls o 1 2 -1 -1 -3 1 7

By transformation
0—1,1+—12+«— —1and 3 «— —1.
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Remark: We cannot use table of operations to check whether two groups
are the same or not.
Now consider:

Gl GQ

G can not be the same as G since card(G;) # card(Gz2).



GROUP IsoM:

Consider if card(G;) = card(G3), then

1. There exists f : G — G2 such that f is bijective.
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fla

,
e - - — - __

=

2.Ya,be G, flab) = f(a)f(b).
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DEFINITION (ISOMORPHISM GROUPS)

Let G; and G be two groups. We say that G is isomorphic to G2
there exists a function f : G; — G5 which satisfies:

1. f is bijection.
2. f preserves operator, that is f(ab) = f(a)f(b) for any a,b € G.
We symbolize this fact by writing,

Gi=2Gy or G ~Gs.

10
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1. Any infinite cyclic group is isomorphic to Z.

PROOF.

Let G = (x) where |z| = cc.
Consider the map f : G — Z given by ™ — n where n € Z.
This map is well-defined and injective since for any 2™, z" € G

" =zx" <= m=n

where m,n € Z.
Now f is surjective since for any n € Z, 3z™ € G such that f(z") = n.
And f is operation preserving since for any 2", z" € G, we have

fl@ma"™) = f(@™ ") =m+n = f(@™) + f(a").




GROUP ISOMORPHISMS

2. Any finite cyclic group (x) such that card({x)) = n is isomorphic to
7.

Proof: Let G = (z) where |z| = n.

Consider the map f : G — Z,, given by

f(z?)=p modn

where p € Z.
Now f is injective since Vp,q € Z

p( mod n) =¢( modn) < 2P = z9.

And f is surjective since Vp( mod n) € Z,,3zP € G such that f(zP) =p
mod n.
Furthermore f preserve group operation: Let 2P, 2% € GG then
faPz®) = f(aP*)

=(p+¢) modn

= (p mod n)+ (¢ mod n)

= f(a¥) + f(29)
Therefore, G = Z,,.



How DOES ONE RECOGNIZE IF TWO GROUPS ARE
ISOMORPHIC TO EACH OTHER?

@ Make a smart guess on a function f : G; — G5 which might be an
isomorphism.

@ Check that f is injective and surjective, that is bijective.
@ Check that f satisfies the preserve operation f(ab) = f(a)f(b).



GROUP ISOMORPHISMS

How DOES ONE RECOGNIZE WHEN TWO GROUPS ARE
NOT ISOMORPHIC TO EACH OTHER?

Show that two groups GG; and G2 are not isomorphic by observing:
e card(G;) # card(Gz)
o |G1| # |G:
o (31 is cyclic but G5 is not.
@ (1 is abelian but G5 is not.



Cayley’s Theorem



CAYLEY'S THEOREM

Every group is isomorphic to a group of permutations.

Proof: Let G be an arbitrary group. Consider the permutation group S¢
and for each g € G, we define a map

fg:G—=G

T gT

First, observe that f;, € Sg for all g € G. Indeed,
folw) = foy) = gr =gy =z =y, Vr,yeC.

VyeG Ir=g"lye G, fy(2) = fo(97y) =99 'y =y
In addition, the set G := {f,|g € G} is a subgroup of S¢ since for any
g1,92 € G and = € G, we have

(fgr © fg2) () = f4,(92%) = 91927 = fyg,9,(7) == fg,0f90 = fg190 € G.

for 0 fgfl(‘r) =fa (97'2) = g1gy 'z = =.



CAYLEY'S THEOREM

= fg 0 f =1d= g‘llzfgfleé.

We will prove that G =2 G. Consider a map:
f:G—G
g Iy
This map is well-defined and injective.
Let g1,92 € G,

g1 = g1 <= g1 = gax,Vz € G = fy, = f,
Now f is clearly surjective because Yy € G,3x = g~ 'y € G such that
fo@) = folg™'y) =99 'y =y
And f preserves the operation: for any g1,g2 € G, we have

f(gng) = f91g2 = f91 0 fgz = f(gl) o f(QQ)-

Therefore,
G

IR

G < Se.



Properties of Isomorphism



LEY’S THEOREM

PROPERTIES OF ISOMORPHISM
APPLICATION OF [SOMORPHISM

Properties of Isomorphism Acting on Elements

Suppose that f is an isomorphism from a group G onto a group G.
@ | carries the identity of G to the identity of G.
@ For every integer n and for every group element a in G,
fla™) = [f(a)]™
@ For any element a and b in G, a and b commute if and only if f(a)
and f(b) commute.

Q G = (a) ifand only if G = (f(a)).
@ |a| =|f(a)| for all a in G (isomorphism preserves orders).

@ For a fixed integer k and a fixed group element b in G, the equation
x® = b has the same numbers of solutions in G as does the equation
ok = f(b) in G.

@ If G is finite, then G and G have exactly the same number of
elements of every order.




PROPERTIES OF ISOMORPHISM
\PPLICATION OF ISOMORPHISM

Properties of Isomorphism Acting on Groups

Suppose that f is an isomorphism from a group G onto a group G.
@ f!is an isomorphism from G onto G.
@ G is abelian if and only if G is abelian.
@ G is cyclic if and only if G is cyclic.
Q If K is a subgroup of G, then f(K) = {f(k)|k € K} is a subgroup
of G.
@ f(Z(Q)) = Z(G) where Z(G) denotes the center of the group G.

Note: Z(G) = {z € G|zg = gx,Vg € G}.



Application of Isomorphism
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@ In mathematics
@ Studying abstract groups via isomorphisms with
simple/familiar/readable groups.
Example: Suppose V' is vector space on R and finite-dimensional.
Let G={T:V — VI|T is bijective, T,T~" is linear}.
Let 7 : R?® — R3 be the linear transformation defined by

1 1 + 312 — 3
T ) = 31‘1 — T2 + 4:E3
T3 2z1 — 4x2 4+ 3



APPLICATION OF [SOMORPHISM

We get

T1 1+ 3w — 23
ToT |xo | =T | 3x1 — 29 + 43
I3 21’1 74%24’1’3

1+ 3x9 —x3 + 3(3$1 — Ty + 4.133) — (2.131 —4xo + .1‘3)
= | 3(x1 + 3z2 — x3) — (31 — @2 + 4a3) + 4(221 — day + 23)
2(3’]1 + 31’2 - $3) — 4(31’1 — X9 + 41’3) + (21‘1 - 41’2 + 1’3)
T
We must instead again, it is too hard. But we can find T oT |z | by
Zs3
using multiplication of matrix.
1 3 -1 X
T(xz)=13 -1 T
2 —4 I3
3 -1 1 3 -1
-1 4 3 -1 4 | =ToT.
-4 1 2 -4 1

N W
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THANK YOU FOR YOUR PAYING ATTENTION !

Mathematics is the art of giving the same name to different things.
Henri Poincaré (1854-1912)

The basis for poetry and scientific discovery is the ability to comprehend
the unlike in the like and the like in the unlike.

Jacob Bronowski
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Deom Vanny for providing me guidance and feedback throughout this
project work.
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discussed with me during this project work period.
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Q&A!
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