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Introduction

Definition (Multiplication of Matrix)
If A is an m× n matrix and B is an n× p matrix,

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 , B =


b11 a12 · · · a1p
b21 a22 · · · a2p
...

...
. . .

...
bn1 an2 · · · anp


the matrix product C = AB is defined to be the m× p matrix

C =


c11 c12 · · · c1p
c21 c22 · · · c2p
...

...
. . .

...
cm1 cm2 · · · cmp


such that cij = ai1b1j + ai2b2j + · · · ainbnj =

∑n
k=1 aikbkj ,

for i = 1, 2, · · · ,m and j = 1, 2, · · · , p.

1



Definition (Systems of Linear Equations)
Suppose F is a field. We consider the problem of finding n scalars
(elements of F ) x1, x2, ..., xn which satisfy the condition

A11x1 +A12x2 + · · ·+A1nxn = B1

A21x1 +A22x2 + · · ·+A2nxn = B2

...
...

...
Am1x1 +Am2x2 + · · ·+Amnxn = Bm

(1)

where B1, ..., Bm and Aij , 1 ≤ i ≤ m, 1 ≤ j ≤ n, are given elements
of F . We call (1) a system of m linear equation in n unknowns.
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How to write systems of linear equation to
matrix form

Suppose that 
A11x1 +A12x2 + · · ·+A1nxn = B1

A21x1 +A22x2 + · · ·+A2nxn = B2

...
...

...
Am1x1 +Am2x2 + · · ·+Amnxn = Bm

(2)

is the system of m linear equation in n unknowns.
Let

A =


A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

...
Am1 Am2 · Amn

 , X =


x1

x2

...
xn

 and B =


B1

B2

...
Bm


Note:

Make sure that all of the equations are written in a similar manner,
meaning the variables need to all be in the same order.
Make sure that one side of the equation is only variables and their
coefficients, and the other side is just constants. 3



Using matrix multiplication, we may define a system of equations with the
same number of equations as variables as:

AX = B.

To solve a system of linear equations using an inverse matrix,
We have

AX = B, multiple by inverse of matrix A

A−1AX = A−1B, multiple between A−1A = I, I is unity matrix
IX = A−1B, multiple between IX = X

X = A−1B

Therefore, to find answer X, we have to find the inverse of matrix A i.e.,
the systems of linear equation has answer when the matrix A have inverse
of it.
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Theorem
Let AX = B be a system of linear equation, where A is the coefficient
matrix. If A is invertible then the system has a unique solution, given by

X = A−1B.

Proof: We have
AX = B =⇒ X = A−1B

If AX = B has two sets of solution X1 and X2, we get

AX1 = B and AX2 = B then AX1 = AX2

By cancellation law, A is being invertible, then

X1 = X2

Therefore, the system of linear equation AX = B has a unique solution.
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How to find the inverse of matrix?

Definition (Elementary row operation)
Three types of elementary row operations can be performed on matrices:

1 Interchanging two rows:
Ri  ! Rj interchanges rows i and j.

2 Multiplying a row by a nonzero scalar:
Ri −! tRi multiplies row i by the nonzero scalar t.

3 Adding a multiple of one row to another row:
Rj −! Rj + tRi adds t times row i to row j.

Definition (Row Equivalent)
Matrix A is row-equivalent to matrix B if B is obtained from A by a
sequence of elementary row operations. We denoted

A = EnEn−1...E2E1B,

where E1, E2, ..., En are elementary matrices.
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Lemma
An elementary matrix is nonsingular and its inverse is an elementary
matrix of the same type.

Theorem
An n× n matrix A is nonsingular if and only if A is a product of
elementary matrices.

Corollary
An n× n matrix A is nonsingular if and only if A is row equivalent to I.
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Theorem
Let A be an n× n matrix and suppose that A is row equivalent to I.
Then A is nonsingular, and A−1 can be found by performing the same
sequence of elementary row operations on I as were used to convert A to
I.

Proof: Suppose that A is row equivalent to I then

I = EnEn−1...E2E1A

where E1, E2, ..., En are elementary matrices. Then

InA
−1 = EnEn−1...E2E1AA−1

A−1 = EnEn−1...E2E1

We now have an effective algorithm for computing A−1. We use elemen-
tary row operations to transform A to In; the product of the elementary
matrices EnEn−1...E2E1 gives A−1. The algorithm can be efficiently or-
ganized as follows. Form the n× n matrix [A|In] and perform elementary
row operations to transform this matrix to

[
In|A−1

]
. Every elementary

row operation that is performed on a row of A is also performed on the
corresponding row of In.
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Example

Find an inverse of matrix A =

3 1 6
1 −1 4
3 2 −2

.

Answer: Find an inverse of matrix A =

3 1 6
1 −1 4
3 2 −2


Observe,  3 1 6 1 0 0

1 −1 4 0 1 0
3 2 −2 0 0 1


 1 −1 4 0 1 0

3 1 6 1 0 0
3 2 −2 0 0 1

 , R1 ↔ R2 1 −1 4 0 1 0
3 1 6 1 0 0
0 −1 8 1 0 −1

 , R3 ! R2 −R3
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 1 −1 4 0 1 0
0 4 −6 1 −3 0
0 −1 8 1 0 −1

 , R2 ! −3R1 +R2 1 −1 4 0 1 0
0 4 −6 1 −3 0
0 0 26 5 −3 −4

 , R3 ! R2 + 4R3 1 0 5
2

1
4

1
4 0

0 4 −6 1 −3 0
0 0 1 5

26 − 3
26 − 2

13

 , R3 !
1

26
R3, R1 ! R1 +

1

4
R2 1 0 0 − 3

13
7
13

5
13

0 1 − 3
2

1
4 − 3

4 0
0 0 1 5

26 − 3
26 − 2

13

 , R1 ! R1 −
5

2
R3, R2 !

1

4
R2 1 0 0 − 3

13
7
13

5
13

0 1 0 7
13 − 12

13 − 3
13

0 0 1 5
26 − 3

26 − 2
13

 , R2 ! R2 +
3

2
R3

Therefore, A−1 =

− 3
13

7
13

5
13

7
13 − 12

13 − 3
13

5
26 − 3

26 − 2
13


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Example
Solve the system of linear equations

2x1 + 3x2 + 3x3 = 5

x1 − 2x2 + x3 = −4

3x1 − x2 − 2x3 = 3

Answer: Solve the system of linear equations


2x1 + 3x2 + 3x3 = 5

x1 − 2x2 + x3 = −4

3x1 − x2 − 2x3 = 3
Let

A =

2 3 3
1 −2 1
3 −1 −2

 , X =

x1

x2

x3

 andB =

 5
−4
3


Then

AX = B =⇒ X = A−1B
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Now, 2 3 3 1 0 0
1 −2 1 0 1 0
3 −1 −2 0 0 1


 1 −2 1 0 1 0

2 3 3 1 0 0
3 −1 −2 0 0 1

 , R1 ↔ R2 1 −2 1 0 1 0
0 7 1 1 −2 0
0 5 −5 0 −3 1

 , R2 ! R2 − 2R1, R3 ! R3 − 3R1 1 −2 1 0 1 0
0 7 1 1 −2 0
0 0 40 5 11 −7

 , R3 ! 5R2 − 7R3 1 −2 1 0 1 0
0 1 1

7
1
7 − 2

7 0
0 0 1 1

8
11
40 − 7

40

 , R2 !
1

7
R2, R3 !

1

40
R3 1 −2 1 0 1 0

0 1 0 1
8 − 13

40
1
40

0 0 1 1
8

11
40 − 7

40

 , R2 ! R2 −
1

7
R3
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 1 0 1 1
4

7
20

1
20

0 1 0 1
8 − 13

40
1
40

0 0 1 1
8

11
40 − 7

40

 , R1 ! R1 + 2R2 1 0 0 1
8

5
8 − 1

8
0 1 0 1

8 − 13
40

1
40

0 0 1 1
8

11
40 − 7

40

 , R1 ! R1 −R3

Thus

A−1 =

 1
8

5
8 − 1

8
1
8 − 13

40
1
40

1
8

11
40 − 7

40

 =
1

8

1 5 −1
1 − 13

5
1
5

1 11
5 − 7

5


Then

X =
1

8

1 5 −1
1 − 13

5
1
5

1 11
5 − 7

5

 5
−4
3


x1

x2

x3

 =
1

8

−18
16
−8


Therefore,

x1 = −9

4
, x2 = 2, x3 = −1.
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