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Introduction

Definition (cosets)
Let G be a group, and H a subgroup of G.

1. The right coset of H in G defined by Ha = {ha|h ∈ H},∀a ∈ G.
2. The left coset of H in G defined by aH = {ah|h ∈ H},∀a ∈ G.

Moreover, the set of left and right cosets are denoted respectively by

G⧸H = {aH|a ∈ G} and H\G = {Ha|a ∈ G}.
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How to make G⧸H or H\G a
group?
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Let G is group and H ≤ G

And let G⧸H = {aH|a ∈ G} (is a set)
We define an operation on G⧸H by coset multiplication:
(G, ∗) : (aH)(bH) := (ab)H

G⧸H ×G⧸H −! G⧸H
(aH, bH) 7! (ab)H

Is this operation well-defined?
Answer: If H ≤ G then operation is not well-defined.
Via counterexample: if G = S3 = {ϵ, (12), (13), (23), (123), (132)}
And let H ≤ G such that H = {ϵ, (12)}

We get (13)H = {(13), (123)} = (123)H

(23)H = {(23), (132)} = (132)H

We get ((13)H, (23)H) = ((123)H, (132)H)

Then ((13)H)((23)H) = [(13)(23)]H = (132)H

But ((123)H)((132)H) = [(123)(132)]H = (ϵ)H
It means that one element in the domain assign two elements in the range.
So the above operation is not well-defined.
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Is the operation on G⧸H satifies other conditions?
Associative
We have [(aH)(bH)](cH) = [(ab)H](cH)

= (abc)H = (aH)(bc)H

= (aH)[(bH)(cH)]

The identity: (eH = H)
We have eH = {eh|h ∈ H} = {h|h ∈ H} = H
such that (aH)(eH) = (ae)H = aH

(eH)(aH) = (ea)H = aH

Inverse:
∀aH ∈ G⧸H, ∃a−1H ∈ G⧸H
such that (aH)(a−1H) = (aa−1)H = eH = H

(a−1H)(aH) = (a−1a)H = eH = H

What condition on H that the operation on G⧸H defined above well-
defined?
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Definition (normal subgroups)
A subgroup H of a group G is called a normal subgroup of G if
aH = Ha for all a ∈ G. We denote this by H ◁ G.

Theorem

Let G be a group and H ◁ G. The set G⧸H = {aH|a ∈ G} is a group
under the operation

(aH)(bH) = (ab)H, ∀a, b ∈ G.

G⧸H is called the factor group, or quotient group of G by H.
Notice that :
(a+H)(b+H) = (a+ b) +H, we define (×) on G⧸H if (G,+).
(a+H) + (b+H) = (a+ b) +H, we define (+) on G⧸H if (G,+).

Proof: It is enough to prove that the operation is well-defined.
If H ◁ G then coset multiplication (Operation) is well-defined. How?
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(aH, bH) ∈ G⧸H ×G⧸H
(cH, dH) ∈ G⧸H ×G⧸H

If (aH, bH) = (cH, dH) =⇒ (ab)H = (cd)H?

If
{
aH = cH then a ∈ cH

bH = dH then b ∈ dH

Then
{
a = ch1

b = dh2

for some h1, h2 ∈ H

Thus (ab)H = (ch1)(dh2)H

= c(h1d)h2H, since, Hd = dH

= cdh3h2H

= (cd)H , since h3h2H ⇐⇒ h3h2 ∈ H

Therefore, ∗ on G⧸H is well-defined.
Example: From above counterexample H ̸◁ S3 where H = {ϵ, (12)}
because (12)(123) ̸= (123)(12) where (123) ∈ S3.
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Review: The set of left or right cosets are define respectively by
G⧸H = {aH|∀a ∈ G} and H\G = {Ha|∀a ∈ G}.
By the theorem of Larange’s :

|G| = |G : H||H| =
∣∣∣G⧸H∣∣∣ |H|
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Proposition

Let G be a group and H ◁ G. If G⧸H and H are finitely generated then
G is finitely generated. (A group is said to be finitely generated if it is
generated by a finite subset of its elements.)

Proof:
Let G⧸H = ⟨g1H, g2H, ..., gmH⟩ and H = ⟨h1, h2, ..., hn⟩ for some posi-
tive integer m,n.
Let x ∈ G then xH ∈ G⧸H = ⟨g1H, g2H, ..., gmH⟩

=⇒ xH = yH where y ∈ ⟨g1, g2, ..., gm⟩
Then y−1x ∈ H = ⟨h1, h2, ..., hn⟩

=⇒ y−1x = h, h ∈ H

=⇒ x = yh ∈ ⟨g1, ..., gm, h1, ..., hn⟩.
Therefore, G is finitely generated.
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Proposition

Let G be a group and let Z(G) be the center of G. If G⧸Z(G) is cyclic,
then G is Abelian.

Proof:
Recall that Z(G) = {x ∈ G|xg = gx, ∀g ∈ G}
Let g ∈ G then gZ(G) ∈ G⧸Z(G) = ⟨g0Z(G)⟩.
Then ∃n ∈ Z such that gZ(G) = (g0Z(G))

n
= gn0Z(G)

⇐⇒ g−n
0 g = x, x ∈ Z(G)

=⇒ g = gn0 x
Thus, ∀g1, g2 ∈ G, ∃m,n ∈ Z such that g1 = gm0 x, g2 = gn0 y for some
x, y ∈ Z(G).
Then g1g2 = (gm0 x)(gn0 y) = gm0 gn0 xy = gm0 gn0 yx = g2g1.
Therefore, G is Abelian.
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Proposition

If every element of G⧸H has a square root, and every element of H has a
square root, then every element of G has a square root. (Assume G is
abelian.)

Proposition

Let p be a prime number. If G⧸H and H are p-groups, then G is a
p-groups. A group G is called a p− group if the order of every element x
in G is a power of p.
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Definition

Let G,G
′ be groups. A map f : G −! G

′ is said to be an
homomorphism if it preserve the group operator; that is,
f(ab) = f(a)f(b) for all a, b ∈ G. In addition, if:

f is one-one then f is called monomorphsim.
f is onto then f is called epimorphism.
f is bijective then f is called isomorphism.
f is bijective and G = G

′ then f is called automorphism.

Definition

Let f : G −! G
′ be a group homomorphism. Then the sets:

ker(f) = {x ∈ G|f(x) = eG′} ⊂ G is called the kernel of
homomorphism f .
Im(f) = {f(x)|x ∈ G} ⊂ G

′ is called the image of G in G
′ via

homomorphism f .
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Proposition

Let f be a group homomorphism from G to G
′ . Then

1. Im(f) ≤ G
′ .

2. ker(f) ◁ G.

Proof:
1. Let f(g1), f(g2) ∈ Im(f), such that g1, g2 ∈ G.
We have f(g1)f(g2) = f(g1g2) ∈ Im(f).

And [f(g1)]
−1 = f(g−1

1 ) ∈ Im(f).

Thus, Im(f) ≤ G
′
.
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2. Let x, y ∈ ker(f) then f(x) = e and f(y) = e
We have f(xy−1) = f(x)f(y−1)

= e[f(y)]−1

= ee−1

= e

So, xy−1 ∈ ker(f) then ker(f) ≤ G.
From definition of normal subgroups is aH = Ha, ∀a ∈ G.
Observation that aH = Ha ⇐⇒ aHa−1 = H

⇐⇒ ∀a ∈ G, ∀h ∈ H, aha−1 ∈ H.
If a ∈ ker(f) and x ∈ G
Then f(xax−1) = f(x)f(a)f(x−1)

= f(x)f(a)[f(x)]−1

= f(x)[f(x)]−1, since f(a) = e

= e

So, xax−1 ∈ ker(f) then ker(f) ◁ G.
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Theorem (Fundamental Theorem of Homomorphisms)

Let f be a group homomorphism from G to G
′ . Then the mapping from

G⧸ker(f) to G
′ , given by g ker(f) 7! Im(f), is an isomorphism. In

symbols, G⧸ker(f) ∼= Im(f).

Proof: Consider the map f
′
: G⧸ker f −! Imf

defined by f
′
(g ker f) = f(g), g ∈ G.

Now f
′ is well-defined and injective since

a ker f = b ker f ⇐⇒ b−1a ∈ ker f ⇐⇒ f(b−1a) = e ⇐⇒ f(a) = f(b).

And f
′ is surjective: since

f
′
(
G⧸ker f

)
= {f

′
(g ker f)|g ∈ G} = {f(g)|g ∈ G} = Imf.

Moreover f ′ is homomorphism:
f

′
[(a ker f)(b ker f)] = f

′
(ab ker f)

= f(ab) = f(a)f(b)

= f
′
(a ker f)f

′
(b ker f). 16
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Proposition

Let f : Z −! Zn. For each n ∈ N then Z⧸nZ ∼= Zn.

Note: nZ ◁ Z and so Z⧸nZ = {m+ nZ|m ∈ Z}.
Proof: We have f : Z −! Zn given by f(m) = m( mod n).
Observe that f is a homomorphism from Z to Zn.
And f is clearly surjective.
Consider ker(f) = {m ∈ Z : m( mod n) = 0}

= {m ∈ Z : m = kn, k ∈ Z}
= nZ = ⟨n⟩.

By Fundamental Theorem of Homomorphisms, we have that:

Z⧸ker(f) =
Z⧸nZ = Z⧸⟨n⟩ ∼= Im(f) = Zn.

Therefore, Z⧸nZ ∼= Zn.
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A picture of the isomorphism f : Z⧸12Z −! Z12:
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Proposition
Let (R,+) and (Z,+) be the additive group. And let
T = {z ∈ C : |z| = 1} be the circle group. Prove that R⧸Z ∼= T.

Review: (R,+), (Z,+) are abelian group. Then Z ◁ R and
R⧸Z = {x+ Z|x ∈ R}.

The circle group, denoted by T, is the multiplicative
group of all complex numbers with absolute value 1,
that is, the unit circle in the complex plane or simply
the unit complex numbers.

x

y
eiθ

θ

T = {z ∈ C : |z| = 1} = {ei2πx|x ∈ R}.

Proof: R⧸Z ∼= T. Let a map f : R −! T given by f(x) = e2πix.
Note that f is well-define since, a, b ∈ R

a = b ⇐⇒ 2πia = 2πib =⇒ e2πia = e2πib ⇐⇒ f(a) = f(b).
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Now f is homomorphism because, let a, b ∈ R then

f(a+ b) = e2πi(a+b) = e2πia · e2πib = f(a) · f(b)

And f is surjective since ∀y ∈ T,∃x ∈ R such that y = ei2πx

=⇒ f(x) = ei2πx = y.
Moreover, ker(f) = {x ∈ R : ei2πx = 1}

= {n : n ∈ Z}.
Then ker(f) = Z. By Fundamental Theorem of Homomorphisms :

R⧸ker(f) ∼= T.

Therefore R⧸Z ∼= T.
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