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INTRODUCTION

Let G be a group, and H a subgroup of G.
1. The right coset of H in G defined by Ha = {ha|h € H},Va € G.

2. The left coset of H in G defined by aH = {ahlh € H},Va € G.
Moreover, the set of left and right cosets are denoted respectively by

G/H = {aHla € G} and py\%={Hala € G}.




How to make G/H or ;7\ a
group?
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Let G is group and H < G
And let G/H = {aH|a € G} (is a set)

We define an operation on G/H by coset multiplication:
(G,x): (aH)(bH) := (ab)H

G/H X G/H — G/H
(aH,bH) — (ab)H
Is this operation well-defined?
Answer: If H < G then operation is not well-defined.
Via counterexample: if G = S3 = {e, (12), (13), (23), (123), (132)}
And let H < G such that H = {¢, (12)}
We get (13)H = {(13),(123)} = (123)H
(23)H = {(23),(132)} = (132)H
We get  ((13)H, (23)H) = ((123)H, (132)H)
Then ((13)H)((23)H) = [(13)(23)|H = (132)H
But ((123)H)((132)H) = [(123)(132)|H = (¢)H
It means that one element in the domain assign two elements in the range.
So the above operation is not well-defined.
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Is the operation on G/H satifies other conditions?

@ Associative
We have [(aH)(bH)|(cH) = [(ab)H](cH)

@ The identity: (eH = H)
We have eH = {eh|lh e H} ={hlhe H} = H
such that (aH)(eH) = (ae)H = aH
(eH)(aH) = (ea)H = aH
@ Inverse:
VaH € Gy, 3o 'H e Gy
such that (aH)(a 'H) = (aa ')H = eH = H
(a*H)(aH) = (a"ta)H =eH = H
What condition on H that the operation on G/H defined above well-
defined?
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DEFINITION (NORMAL SUBGROUPS)

A subgroup H of a group G is called a normal subgroup of G if
aH = Ha for all a € G. We denote this by H < G.

THEOREM

Let G be a group and H < G. The set G/H = {aH|a € G} is a group
under the operation

(aH)(bH) = (ab)H,Va,b € G.

G/ 7 is called the factor group, or quotient group of G by H.
Notice that :

(a+ H)(b+ H) = (a+0b)+ H, we define (x) on G/H if (G,+).
(a4 H) + (b+ H) = (a+b) + H, we define (+) on G/p1 if (G, +).

Proof: It is enough to prove that the operation is well-defined.
If H <G then coset multiplication (Operation) is well-defined. How?
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(aH,bH) € G/ x Gy

(cH,dH) € G/ x Gy
If (aH,bH)= (cH,dH) = (ab)H = (cd)H?
If aH =cH then a€cH

bH =dH then bedH

Then a=ch for some hy,hy € H
b= dhy

Thus (ab)H = (chi)(dhe)H

= c(hid)hoH, since, Hd = dH

= cdhgho H

= (cd)H ,since hghoH <= hshy € H
Therefore, * on G/H is well-defined.
Example: From above counterexample H #4 S3; where H = {e,(12)}
because (12)(123) # (123)(12) where (123) € Ss.
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Review: The set of left or right cosets are define respectively by
Gy = {aH|Va € G} and y\¢ = {Ha|Va € G}.
By the theorem of Larange's :

Gl =G5 H|JH| = || 18]

W2
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PROPOSITION

Let G be a group and H < G. If G/H and H are finitely generated then
G is finitely generated. (A group is said to be finitely generated if it is
generated by a finite subset of its elements.)

Proof:
Let G/H ={(q1H,g92H,...,gmnH) and H = (hq, ho, ..., hy,) for some posi-
tive integer m, n.
Let z € G then zH € Gy = (g1 H, g2 H, ..., g H)
= xH =yH where y € (91,92, 9m)
Then y 'z € H = (hy, ho,....,h,)
=y lo=h heH
=z =yh € (g1, s Gm, 1, .., hn).
Therefore, G is finitely generated.
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Let G be a group and let Z(G) be the center of G. If G/Z(G) is cyclic,
then G is Abelian.

Proof:
Recall that Z(G) = {z € G|zg = gx,Vg € G}
Let g € G then gZ(G) € G/Z(G) = (90Z(G)).
Then 3n € Z such that  gZ(G) = (90Z(G))" = g4 Z(G)

= gy'g=2z, z¢€Z(G)

— g =907

Thus, Vgi,92 € G,3Im,n € Z such that g1 = gj'z,g92 = ggy for some
z,y € Z(Q).

Then g192 = (95"2)(90Y) = 96° 967y = 95" 96 YT = G291
Therefore, G is Abelian.
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PROPOSITION

If every element of G/H has a square root, and every element of H has a
square root, then every element of G has a square root. (Assume G is
abelian.)

PROPOSITION

Let p be a prime number. If G/H and H are p-groups, then G is a
p-groups. A group G is called a p — group if the order of every element z
in G is a power of p.




Fundamental Theorem of
Homomorphisms
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DEFINITION

Let G,G/ be groups. A map f: G — G’ is said to be an
homomorphism if it preserve the group operator; that is,
f(ab) = f(a)f(b) for all a,b € G. In addition, if:

@ f is one-one then f is called monomorphsim.

@ f is onto then f is called epimorphism.
o f is bijective then f is called isomorphism.

o f is bijective and G = G’ then f is called automorphism.

DEFINITION

Let f: G — G be a group homomorphism. Then the sets:
o ker(f) ={z € G|f(z) =es} C G is called the kernel of
homomorphism f.

o Im(f) = {f(z)|z € G} € G is called the image of G in G via
homomorphism f.
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PROPOSITION

Let f be a group homomorphism from G to G'. Then
1 Im(f) < G
2. ker(f)«G.

Proof:

1. Let f(g1), f(g2) € Im(f), such that g1,92 € G.
We have  f(g1)f(92) = f(9192) € Im(f).
) 1

And [f(g1)] 7" = flgr ') € Im(f).
Thus, Im(f) '

G.

IN
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2. Let z,y € ker(f) then f(z) =e and f(y) =e
We have f(ay™") = f(2)f(y~"
=elf(y)]™

=ee !

=e

So, zy~! € ker(f) then ker(f) < G.

From definition of normal subgroups is aH = Ha,Va € G.
Observation that aH = Ha <= aHa ' = H

<= VYa e G,Yh € Haha ! € H.
If a € ker(f) and reG

Then f(zaz™") = ()f(a)f(aj D)
f(@)f(a)[f ()]
f@)f@)]7", since f(a) = e

=e

So, zax~! € ker(f) then ker(f) < G.
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THEOREM (FUNDAMENTAL THEOREM OF HOMOMORPHISMS)

Let f be a group homomorphism from G to G'. Then the mapping from
G/ker(f) to G, given by gker(f) — Im(f), is an isomorphism. In

symbols, G/ker(f) = Tm(f).

Proof: Consider the map f : G/kerf — Imf

defined by f/(gkerf) = flg), g€@G.
Now f is well-defined and injective since

aker f =bker f <= b la € ker f <= f(b 'a) = e < f(a) = f(b).

And f/ is surjective: since
7 (Cher ) = {F (gker Dlg € @} = {(7(g)lg € G} = TnF.

l\/!oreover f/ is homomorphism:
£ l(aker f)(bker f)] = f (abker f)
= f(ab) = f(a)f(b)
= f (aker f) ' (bker f).



Application of Fundamental
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PROPOSITION
Let f:Z — Z,. For each n € N then £/ =~ 7,,.

Note: nZ < Z and so Z/nZ ={m+nZ|m € Z}.

Proof: We have f : Z — Z,, given by f(m)=m( mod n).

Observe that f is a homomorphism from Z to Z,,.

And f is clearly surjective.

Consider ker(f) = {m € Z: m( mod n) =0}
={meZ:m=knkelZ}

=nZ = (n).
By Fundamental Theorem of Homomorphisms, we have that:

“er(p) = Yoz =" ny =) = Zon.

Therefore, Z/nZ = 7.
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A picture of the isomorphism f : Z/IQZ — 7o

z

{3 —Z.Z:" +{=1+(2) -(L‘l -E’ _'xl -
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PROPOSITION

Let (R,+) and (Z,+) be the additive group. And let
T ={z € C: |z| = 1} be the circle group. Prove that R/Z ~T.

Review: (R,+), (Z,+) are abelian group. Then Z <R and
R/Z ={z+Z|z € R}

Y
The circle group, denoted by T, is the multiplicative et?
group of all complex numbers with absolute value 1,
that is, the unit circle in the complex plane or simply o

the unit complex numbers.

T={2€C:|z| =1} = {?™|2z € R}.

Proof: R/Z ~T. Let a map f: R — T given by f(z) = €2™®.
Note that f is well-define since, a,b € R

a=b < 2mia = 2mib = €*™ = > — f(a) = f(D).

20
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Now f is homomorphism because, let a,b € R then
f(a—|—b) — e27ri(a+b) — erria . eQﬂ‘ib — f(a) . f(b)

And f is surjective since Yy € T, 3z € R such that y = ¢??7*
= f(z) =™ =y. _
Moreover, ker(f) = {x € R: ™ =1}

={n:ne€Z}.

Then ker(f) = Z. By Fundamental Theorem of Homomorphisms :

R/ker(f) =T.

Therefore R/Z =T.

21
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THANK YOU FOR YOUR PAYING ATTENTION !

It is tribute to the genius of Galois that he recognized that those subgroups
for which the left and right cosets coincide are distinguished ones. Very
often in mathematics the crucial problem is to recognize and to discover
what are the relevant concepts; once this is accomplished the job may be
more than half done.

I.N. HERSTEIN, Topics in Algebra
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Q&A!

25



	How to make GH or HG a group?
	Application of Quotient Groups
	Fundamental Theorem of Homomorphisms
	Application of Fundamental Theorem of Homomorphisms

