GRADIENT DESCENT ALGORITHM

KIMSIE PHAN

M.Sc Mathematics and Computing at IIT DHANDAB, INDIA
phankimsie03@gmail.com

5500[4 7

vy" 0

o

N

<

3

%,
2 4
M.a.cC

Mathematical Association of Cambodia

%ogyys 3°

7

May 10, 2025

GRADIENT DESCENT ALGORITHM

phankimsie03@ gmail.com

Let's find minimizer point of function f(z) = 2% — 2x.

KIMSIE PHAN GRADIENT DESCENT AL

e How to find minimizer point of function
in multiple dimension ?

eg: f(ry,20) = 2% + 23 + 42, — 629

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

e How to find minimizer point of function
in multiple dimension ?

eg: f(ry,20) = 2% + 23 + 42, — 629

x, = arg mingeg» f(z) in n—dimensional space! ’

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

INTRODUCTION-MOTIVATION

l. Introduction

Gradient Descent is an optimization algorithm used to minimize a given
objective function, often called a cost or loss function, by iteratively the
parameters of the model. The essence of Gradient Descent lies in its ability
to navigate the parameter space by following the direction of the steepest
descent, guided by the gradient of the function. The algorithm updates
the model parameters in small steps, guided by the gradient, to gradually
converge to the minimum value of the objective function, where the model
is most accurately fitted.

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

INTRODUCTION-MOTIVATION

l. Introduction

Gradient Descent is an optimization algorithm used to minimize a given
objective function, often called a cost or loss function, by iteratively the
parameters of the model. The essence of Gradient Descent lies in its ability
to navigate the parameter space by following the direction of the steepest
descent, guided by the gradient of the function. The algorithm updates
the model parameters in small steps, guided by the gradient, to gradually
converge to the minimum value of the objective function, where the model
is most accurately fitted.

I1. Motivation

The primary goal of Gradient Descent is to minimize an objective function
that is parameterized by a model’s parameters. This is achieved by itera-
tively updating the parameters in the opposite direction of the gradient of
the objective function with respect to those parameters.

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

200
175
150
125
100

0.75

1.00
050 0.75
050

025 e
0.00 0.00

] 025 X

7075 ps0 s 000 —0.50

: .00 _ -0.75
0.25_g 50

-0.75_; gg'l.00

Gradient Descent in Action

DIENT DESCENT

200
175
150
125
100

0.75

1.00
050 0.75
050

025 e
0.00 0.00

] 025 X

7075 ps0 s 000 —0.50

: .00 _ -0.75
0.25_g 50

-0.75_; gg'l.00

Gradient Descent in Action

DIENT DESCENT

200
175
150
125
100

0.75

1.00
050 0.75
050

025 e
0.00 0.00

] 025 X

7075 ps0 s 000 —0.50

: .00 _ -0.75
0.25_g 50

-0.75_; gg'l.00

Gradient Descent in Action

DIENT DESCENT

200
175
150
125
100

0.75

1.00
050 0.75
050

025 e
0.00 0.00

] 025 X

7075 ps0 s 000 —0.50

: .00 _ -0.75
0.25_g 50

-0.75_; gg'l.00

Gradient Descent in Action

DIENT DESCENT

200
175
150
125
100

0.75

1.00
050 0.75
050

025 e
0.00 0.00

] 025 X

7075 ps0 s 000 —0.50

: .00 _ -0.75
0.25_g 50

-0.75_; gg'l.00

Gradient Descent in Action

DIENT DESCENT

200
175
150
125
100

0.75

1.00
050 0.75
050

025 e
0.00 0.00

] 025 X

7075 ps0 s 000 —0.50

: .00 _ -0.75
0.25_g 50

-0.75_; gg'l.00

Gradient Descent in Action

DIENT DESCENT

200
175
150
125
100

0.75

1.00
050 0.75
050

025 e
0.00 0.00

] 025 X

7075 ps0 s 000 —0.50

: .00 _ -0.75
0.25_g 50

-0.75_; gg'l.00

Gradient Descent in Action

DIENT DESCENT

200
175
150
125
100

0.75

1.00
050 0.75
050

025 e
0.00 0.00

] 025 X

7075 ps0 s 000 —0.50

: .00 _ -0.75
0.25_g 50

-0.75_; gg'l.00

Gradient Descent in Action

DIENT DESCENT

Recall:

DEFINITION (GRADIENT)

A gradient is a vector that represents the direction and rate of the
steepest increase of a function. Define function f : R™ — R™ be
differentiable. For any z € R™, the gradient of function f at x is defined

by
of 0 0
Vf(xl,l}g, ,flin) = (8_3{;, 8_:;;’ ceey %) € R".

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

—Vi(z)

—Vi(z)

KIMSIE Pt

KIMSIE Pt

GRADIENT DESCENT

DEFINITION (GRADIENT DESCENT)

For a given objective function J(6), where 6 represents the parameters,
the update rule for Gradient Descent is

0:=0—nVeJ(0).

e (is the parameters.
e 1) > 0 is the learning rate, or stepsizes.
o VyJ(0) is the direction or gradient of the cost function w.r.t 6.

.

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

g0
~ A A

Algorithm
GradientDescent

Input: Learning rate n, number of iterations N, initial parameters 6
Output: Optimized parameters 8

fori=1to N do
Compute gradient V6 J(8)
Update 6 :=6-n" V8 J(6)
(Optioncﬂ) Compute the cost function J(e) to monitor convergence
(Optional) Check if [6_new - 6_old| < threshold, then break

end {OI’

return 6

End A|go rithm
\ J

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

CHOICE OF STEPSIZES

The step size, also called the learning rate is a crucial parameter in gradient
descent algorithms. It determines the size of the steps taken towards the
minimum of the cost function in each iteration.

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

CHOICE OF STEPSIZES

The step size, also called the learning rate is a crucial parameter in gradient
descent algorithms. It determines the size of the steps taken towards the
minimum of the cost function in each iteration.

Let the stepsizes (), is crucial :
e If they are too large, then 6,1 is outside the domain, and the algorithm

may diverge.
e |[f they are too small, 6; needs many time steps to move away from
0y, and convergence can be slow.

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

CHOICE OF STEPSIZES

The step size, also called the learning rate is a crucial parameter in gradient
descent algorithms. It determines the size of the steps taken towards the
minimum of the cost function in each iteration.

Let the stepsizes (), is crucial :

e If they are too large, then 6,1 is outside the domain, and the algorithm
may diverge.

e |[f they are too small, 6; needs many time steps to move away from
0y, and convergence can be slow.

What a good stepsize choice is depends on the properties of J.

1. Fixed schedule: oy generally depends on ¢ through a simple equation,

Vt, «; = for some n >0, (Constant stepsize)
or Vi, «ay= h%l (Monotonically decreasing stepsize)

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

2. Exact line search: for any t, choose a such that

J(et - OétVJ(gt)) = HIGIIEIJ (915 — CLVJ(gt)) .

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

2. Exact line search: for any t, choose a such that

J (015 - OétVJ(at)) = HIGI]%J (91& — aVJ(Ot)) .

3. Backtracking line search: Choose ay such that J (6; — a;VJ(6;)) is
sufficiently smaller than J(6;). Implies, for «; small enough,

J 0y — VI (0,)) = J(0;) — ae||VI(0)]| .

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

2. Exact line search: for any t, choose a such that

J (915 - OétVJ(at)) = mel]%[] (6’,5 — (ZVJ(Qt)) .

3. Backtracking line search: Choose ay such that J (6; — a;VJ(6;)) is
sufficiently smaller than J(6;). Implies, for «; small enough,

J 0y — VI (0,)) = J(0;) — ae||VI(0)]| .

Backtracking Line Search is generally a better and more practical option for

finding the step size in many machine learning and optimization problems
due to its adaptiveness and lower computational cost compared to exact
line search. If simplicity is the primary concern and the problem is well-
behaved, a fixed schedule with a well-tuned learning rate can work well.
Exact Line Search is only recommended in special cases where the objective
function is simple and can be solved exactly at each iteration.

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

e N
Algorithm of Backtracking line search

Steps:

1. Initialize:

« BE(0,1) (commonly around 0.5).

« c€(0,1) (usually a small value like 0.0001).

« Set the initial step size a=a0.

2. Condition Check:

« Repeat until the following condition is satisfied:

J(Bt-avI(6t))<I(6t)—ca || VI(BL)|[A2

« If the condition is not satisfied:
Reduce the step size: a=Ba

\3. Return the final step size a. /

KIMSIE PHAN JIENT DESCENT Al

7 too small

TR
P e
R LL AR .
et
e

s
SIS
G

s

s
L
BB
e
e ettey Seeanees

e o

1 = 0.1; 75 steps

4
5%
Jou 2R
GRS
RIS
R

7 too large

B
e
SRR
oo soeronty
R
R LR Ry
et R
ey
ot et
SARZLLL
%

%
oo
%
R
A
et st
e
ey Lot
e et

LA
e
e

DIENT DES|

2

Chottiiees

i
%

variable 7 — just right

large n

small n

e
R
LR
BRI R
e S rtstited
e e
By
LA
R

%
2%
oeae

L
%

LipscHITZ CONTINUOUS GRADIENT

If the objective function J(@) has a Lipschitz continuous gradient, this
provides important information about the appropriate choice of the learning
rate «; for Gradient Descent.

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

LipscHITZ CONTINUOUS GRADIENT

If the objective function J(@) has a Lipschitz continuous gradient, this
provides important information about the appropriate choice of the learning
rate «; for Gradient Descent.

For any lipschitz constant L > 0, we say that J is L-smooth if V.J is
L-Lipschitz (Lipschitz continuous gradient), that is

Vr,y € R, [|[VJ(2) = VJ(y)|| < Lz — y]|.

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

LipscHITZ CONTINUOUS GRADIENT

If the objective function J(@) has a Lipschitz continuous gradient, this
provides important information about the appropriate choice of the learning
rate «; for Gradient Descent.

For any lipschitz constant L > 0, we say that J is L-smooth if V.J is
L-Lipschitz (Lipschitz continuous gradient), that is

Vr,y € R, [|[VJ(2) = VJ(y)|| < Lz — y]|.

\

Let L > 0 be fixed. If J is L-smooth, then for any x,y € R™,

J) < (@) + (VI(@),y —) + 2 ly "

where (V.J(z).y =) = Sy (%2 (v — 22))

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

PROOF.

Consider the Taylor expansion of J around the point x
J(y) = J(x) + (VJ(z),y — z) + R(y),

where remainder R(y) = fol (VJ(z+t(y —z)) — VJ ()" (y — z)dt

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

PROOF.

Consider the Taylor expansion of J around the point x
J(y) = J(x) + (VJ(z),y — z) + R(y),

where remainder R(y) = fol (VJ(z+t(y —z)) — VJ ()" (y — z)dt
Since J is L-smooth, then

IVJ(z +t(y —) = VJ(2)|| < Ll|t(y — @) = Lt|ly — =|.

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

PROOF.
Consider the Taylor expansion of J around the point x

J(y) = J(@) + (VJ(2),y — =) + R(y),

where remainder R(y fo (VJ(z+t(y —z)) — VJ ()" (y — z)dt
Since J is L- smooth then

IVJ(z +t(y —) = VJ(2)|| < Ll|t(y — @) = Lt|ly — =|.

We get IR@)I < fy Ltlly — 2l1?dt = L|ly — |-
Thus,

T) < (@) + (VI(@),y —)+ 5 lly]

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

COROLLARY

Let J be L-smooth, for some L > 0. We consider gradient descent with
constant stepsize a; = % for all t. Then, for any t,

J(Or11) < J(6:) — —||V=7(9t)||2

Additionally assuming that J is lower bounded,
@ (J(04)).cn converges to a finite value.
Q |[VJ(6,)]| — 0 ast — oco.

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

COROLLARY

Let J be L-smooth, for some L > 0. We consider gradient descent with
constant stepsize a; = % for all t. Then, for any t,

J(Or41) < J(6) — —||V=](9t)||2

Additionally assuming that J is lower bounded,
@ (J(04)).cn converges to a finite value.
Q |[VJ(6,)]| — 0 ast — oco.

SUMMARY: For an objective function with a Lipschitz continuous gradient,
the learning rate should be carefully chosen to be less than %

This ensures that the Gradient Descent algorithm converges effectively,
avoiding instability or divergence. Typically, a learning rate in the range

0<a< % is considered safe and effective for achieving convergence.

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

DEFINITION (CONVEX FUNCTION)

A function J is called a convex function if Vz,y € R™, ¢ € [0, 1],

J(Q -tz +ty) < (1 —-2t)J(z)+ tJ(y).

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

DEFINITION (CONVEX FUNCTION)

A function J is called a convex function if Vz,y € R™, ¢ € [0, 1],

J(Q -tz +ty) < (1 —-2t)J(z)+ tJ(y).

If J is convex, any local minimum is also a global minimum. This means
that if gradient descent converges, it will converge to the global minimum
of J which is often the desired outcome in optimization problems. Without
convexity, gradient descent might converge to a local minimum instead,
which may not be the best solution}

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

PHAN KIMSIE

PHAN KIMSIE

PHAN KIMSIE

PHAN KIMSIE

PHAN KIMSIE

PHAN KIMSIE

PHAN KIMSIE

PHAN KIMSIE

PHAN KIMSIE

PHAN KIMSIE

PHAN KIMSIE

PHAN KIMSIE

PHAN KIMSIE

DEFINITION (CONVEX FUNCTION)

A function J is called a convex function if Vz,y € R™, ¢ € [0, 1],

l J((1—t)z+ty) < (1 —t)J(x) + tJ(y).
If J is convex, any local minimum is also a global minimum. This means
that if gradient Mglobal minimum
of J which is often the desired outcome in optimization problems. Mithaout

convexity, gradient descent might converge to a local minimum instead,
which may not be the best solution.

When J is differentiable, it is convex if and only if

Ve,y € R", J(y) > J(z) + (VJ(x),y — x).

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

PHAN KIMSIE

PHAN KIMSIE

PHAN KIMSIE

PHAN KIMSIE

PHAN KIMSIE

PHAN KIMSIE

PROOF.

(=) : Suppose that J is convex, then

J(1 -tz +ty) < (1-t)J(2) +tJ(y)
J(+t(y —) < J(2) +t(J(y) — J(2))
I - (@) > LEEW =D ZI@) e oy
J(y) > J(z)+ (VJ(x),y — z), ast— 0

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

PROOF.

(=) : Suppose that J is convex, then

J(A =ty +ty) < (1 —1)J(x) +tJ(y)
J(x+i(y — =) < J(z) +t(J(y) — J(2))
J(y) = J(z) = Jt iy - ;))_JW, vt € (0,1]
J(y) > J(z)+ (VJ(x),y — z), ast—0

(<) : Let z =tz + (1 — t)y, then we have

J(z) > J(2) + (VJ(2),x —)
J(y) 2 J(2) +(VJ(2),y — 2)

KIMSIE PHAN

PROOF.

(=) : Suppose that J is convex, then

J(1=t)r+ty) < (1 —t)J(x) +tJ(y)

J(x+t(y —z)) < J(x) +t(J(y) — J(v))
Iw) - J() 2 LEXZD T g gy
J(y) > J(z) +(VJ(z),y — x), ast—0

—
~—
—
(0]
—+
N
I
~
8
+
—
—_
~—

— t)y, then we have
J(z) > J(z) +(VJI(2),z — 2)
J(y) > J(z) +(VJ(2),y — 2)

Then,
tJ(y) + (L —=t)J(z) > J(2) +t(VJ(2),y — 2) + (1 — t)(VJ(2),z — 2)
> J(2)+ (VJ(2),ty —tz + (1 — t)x + tz — 2)

KIMSIE PHAN

Let J be convex and L-smooth, for some L > 0. We consider gradient
descent with constant stepsize :-for all t. Then, for anyt € N,

2L||xg — x.||?
J(ze) = J(zs) < %

where x, is a minimizer of J such thatgiENETinyeiE)

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

PHAN KIMSIE

PHAN KIMSIE

PROOF.

Let ¢ be fixed. Since J is convex, by above theorem, we get

J(@4) > J(@e) + (VI (24), 2 — 24) = J(24) + L{wp — Tog1, 20 —). (1)

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

PROOF.
Let ¢ be fixed. Since J is convex, by above theorem, we get

J(xy) = J(xt) + (VI (), e — x4) = J(21) + L{xs — Tp41, T
And since x, is minimizer, by using L-smoothness
J(@:) < J(@e41)

1
< J(wy) — EHVJ(%)W

L
= J(z) - §||33t+1 — x| %, (2)

—). (1)

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

PROOF.
Let ¢ be fixed. Since J is convex, by above theorem, we get

J(xy) = J(xg) + (VI (24), s — @) = J(24) + L{xt — Tp 1, e — 21). (1)
And since x, is minimizer, by using L-smoothness
J(@s) < J(Tt41)
1
< J(x) — EHVJ(%)W
L 2
ZJ(xt)—§||$t+1—xt||) (2)
From (1) and (2),
J(e) + L{xs — Tpy1, @w — 3) < J(20) < J(21) — §|eqs — 2|

2<$t — T41,Tx — xt> + ||$t+1 - xt||2 < 0
|| —$t+1||2 < ||xs —$t||2

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

PROOF.

Now by above corollary,

J(@er) = (@) < J(2e) = I (@) = 5= VI @), (3)

L)
2L

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

PROOF.

Now by above corollary,

J(@e1) = J(2.) < J(@e) = J(20) = iHVJ(mt)II% (3)

By using Cauchy-schwarz, we can find

J(xp) — J(4)

VJ (x| >
|| (t)” ||ZL‘0—SC*||

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

PROOF.

Now by above corollary,

J(@e1) = J(2.) < J(@e) = J(20) = iHVJ(mt)II% (3)

By using Cauchy-schwarz, we can find

J(xp) — J(4)

VJ (x| >
|| (t)“— ||ZL‘0—SC*||

xt) — J(24))?
J(@iq1) — J(@) < J(2g) — J(24) — 1 (J(z) = J(zs))

2L ||zo — z4|?
1 1 1
> + 7
J(@ey1) = J(xe) — J(x1) = J(2e) 2L||T0 — 2|
1 1 1
>

T(@) = J(@n) = T(@o) — J(@x) | 2Lljzo — 2|2

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

PROOF.

Since, ,
L = B,
J(@o) — J(zy) < M
Therefore,

2L||Tg — z4||2
_ g = Tl
J(zs) — J(24) < t+ 4

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

PROOF.

Since,

L — z.||?
J(@0) — J(xs) < M
Therefore,

2L||xo — x4 [?
_) € =UEY 2=l
Ie) — Ie.) < HE =

O

SUMMARY: The theorem provides a rigorous guarantee of how quickly
gradient descent converges to the minimum for convex and smooth func-
tions. It guides the choice of step size, highlights the importance of initial
conditions, and serves as a critical result for optimizing machine learning
models and other applications in convex optimization.

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

R N T T 1 T 7

BPPRCATIONTO LOGISTIC- REGRESSION

Gradient descent is an optimization algorithm used to minimize the cost
function (also known as the loss function) in machine learning models. In
logistic regression, the cost function is based on the difference between the
predicted probabilities and the actual labels. The aim is to minimize this
difference and find the best parameters that maximize the models accuracy.

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

PHAN KIMSIE

APPLICATION TO LOGISTIC REGRESSION

Gradient descent is an optimization algorithm used to minimize the cost
function (also known as the loss function) in machine learning models. In
logistic regression, the cost function is based on the difference between the
predicted probabilities and the actual labels. The aim is to minimize this
difference and find the best parameters that maximize the models accuracy.

By using gradient descent to minimize the cost function of a machine
learning model, we can find the best set of model parameters for accurate
predictions. This means that it helps us find the best values for our models
parameters so that our model can make accurate predictions.

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

1

KIMSIE PHAN DIENT DESCENT Al

PHAN KIMSIE

PHAN KIMSIE

PHAN KIMSIE

PHAN KIMSIE

PHAN KIMSIE

PHAN KIMSIE

KIMSIE PHAN DIENT DESCENT Al

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

KIMSIE PHAN

The cost function for logistic regression is :

m

1 ‘ , ‘ |
J(O)=—-— Zl {y(” log(hg(2)) + (1 — @) log(1 — hg(x(z)))}
where:
o hg(z) = ﬁ is the hypothesis function (sigmoid function).

o (9 is the feature vector for the i-th training.
o y() is the corresponding label.

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

The cost function for logistic regression is :

1SN ‘ ‘ |
J(O)=—-— Zl {y(” log(hg(2)) + (1 — @) log(1 — hg(x(z)))}
where:
° hf)(x(i)) = % is the hypothesis function (sigmoid function).

14+e—
o (9 is the feature vector for the i-th training.
o y() is the corresponding label.

Now, compute the gradient of the cost function w.r.t =, we get

[VJ(H)]jf :%i(hg)~) aff

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

The cost function for logistic regression is :

m

1 ‘ ‘ ‘ |
J(O)=—-— Zl {y(” log(hg(2)) + (1 — @) log(1 — hg(x(z)))}
where:
° hy(z®) = ﬁ is the hypothesis function (sigmoid function).

o (9 is the feature vector for the i-th training.
o y() is the corresponding label.

Now, compute the gradient of the cost function w.r.t =, we get

VIO, = - 3(0) =~ 3 (ha?) — y))

89]‘ m izl
Then the parameters are updated using Gradient Descent as:
(t+1) _ g ; ;
0; =0;" —a[VJ(0)];, t iterations

Finally, the process is repeated until convergence, leading to the optimal
parameter that minimize the logistic loss and reult in a well-fitted model.

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

ALGORITHM: LOGISTIC REGRESSION WITH

GRADIENT DESCENT

Input:
e Training data {(z(",y®)}, where 2 € R™ and 3 € {0, 1}.
@ Learning rate « and number of iteration n.

STEP 1: Initialize 8 = [0y, 01, ..., 0,] to small random values or zeros.

STEP 2: For iteration ¢t from 1 to n:
1

compute hg, (z()) = —L—
14e J)
compute V [J(0)], = = Y1, (ho, () — y¥)) xg»l)
update 01V = 0\ — a[VI(0)]
STEP 3: After n iterations or convergence, return the optimized parameter
vector 6.

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

Iterationl

Starting
_[(e) N /Poinl
AN
Iterationl
Convergence
HH———+++HH
T ®
Final

Starting Iterationl

X e) A / Fole
N

Iterationl

Iteration2

Convergence Iteration2

Iterationl

Starting
J(e) " / Puoint
N
Iterationl

Iteration2
Convergence Iteration2
Iteration3
. " |
H—— N ERE
Final
Iteration3

LR witH GD IN C++

#include <iostream>
#include <vector>
#include <cmath>

using namespace std;
// Sigmoid function to calculate the hypothesis

double sigmoid(double z) {
return 1.0 / (1.0 + exp(-z));

// Function to compute the dot product of two vectors
double dotProduct(const vector<double>§ a, const vector<double>&
b

double result = 0.0;
for (size_t i = 0; i < ausize(); ++i) {

result += afi] * b[il;

return result;

// Function to perform Logistic Regression using Gradient Descent
vector<double> logisticRegressionGD(const
vector<vector<double>>8 X, const vector<int>8 y, double alpha, int
iterations) {

int m = Xsize(); // Number of training examples

int n = X[0]size(); // Number of features

\vector<doub|e> theta(n, 0.0); // Initialize theta to zeros

// Gradient Descent loop
for (int iter = 0; iter < iterations; ++iter) {
vector<double> gradients(n, 0.0); // Initialize gradients to zero

// Compute gradients for each parameter
for (inti=0; i< m; ++i)

double h_theta = sigmoid(dotProduct(theta, X[i])); // Hypothesis for
example i

for (int = 0;] < n; ++)) {
gradients[j] += (h_theta - y[i]) * X[i][]; // Accumulate gradients
}

// Update each parameter theta_j
for (intj = 0; j < n; ++j)

thetalj] -= (alpha / m) * gradients(j];
}

}

return theta; // Return the optimized theta values

int main() {

// Example training data: 4 examples, 3 features (including bias
term

vector<vector<double>> X = {{1.0, 2.0, 3.0}, {1.0, 3.0, 4.0}, {1.0, 5.0,
6.0},{1.0,7.0,8.0}};

vector<int>y = {0,0,1,1}; // Labels

double alpha = 0.01; // Learning rate
int iterations = 1000; // Number of iterations

// Perform Logistic Regression with Gradient Descent
vector<double> theta = logisticRegressionGD(X, y, alpha,
iterations);

// Output the optimized parameters
cout << "Optimized theta valves: *;
for (double val : theta) {

cout << val <<"";

cout << end;

return 0;

APPENDIX

Stochastic Gradient Descent (SGD): Instead of using the full dataset,
SGD operates on a small random subset (batch) of the data at each iter-
ation. It provides an approximation of the gradient:

@ Faster iterations: Since SGD only uses a small batch of data, it
updates weights more frequently, speeding up learning.

@ Noise and variance: Due to the smaller batches, the gradients are
noisier, leading to faster exploration of the parameter space but
more instability in updates.

o Better generalization: The inherent noise in SGD’s updates allows it
to escape local minima and potentially find better solutions for
generalization.

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

APPENDIX

Stochastic Gradient Descent (SGD): Instead of using the full dataset,
SGD operates on a small random subset (batch) of the data at each iter-
ation. It provides an approximation of the gradient:

@ Faster iterations: Since SGD only uses a small batch of data, it
updates weights more frequently, speeding up learning.

@ Noise and variance: Due to the smaller batches, the gradients are
noisier, leading to faster exploration of the parameter space but
more instability in updates.

o Better generalization: The inherent noise in SGD’s updates allows it
to escape local minima and potentially find better solutions for
generalization.

Addition, in machine learning, different optimization algorithms are used to
improve the efficiency and performance of training models. Some popular
gradient-based optimization methods, specifically focusing on Momentum
methods, Adagrad, and Adam, all of which are variations of Gradient De-
scent.

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

REFERENCES

Gareth James . Daniela Witten . Trevor Hastie . Robert
Tibshirani, An Introduction to Statistical Learning with Applications
in R, Second Edition, 2017, Springer.

Iréne Waldspurger, Gradient descent, (2020),

http://surl. 1i/hqlkru.

M. Magdon-Ismail, Lecture 9- Logistic Regression and Gradient
Descent, http: //surl. 1i/alxrjb.

Sebastian Ruder, An overview of gradient descent optimization al
gorithms*, (2016), https: //arxiv. org/pdf/1609. 04747.
Mark Schmidt, CPSC 540: Machine Learning Convergence of
Gradient Descent, (2017), http: //surl. 1i/vkltec.

KIMSIE PHAN GRADIENT DESCENT ALGORITHM

http://surl.li/hqlkru
http://surl.li/alxrjb
https://arxiv.org/pdf/1609.04747
http://surl.li/vkltec

FUH YUUH
ATTENTION

