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Let’s find minimizer point of function f(x) = x2 − 2x.

How to find minimizer point of function
in multiple dimension ?

eg: f(x1, x2) = x2
1 + x2

2 + 4x1 − 6x2
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Introduction-Motivation

I. Introduction

Gradient Descent is an optimization algorithm used to minimize a given
objective function, often called a cost or loss function, by iteratively the
parameters of the model. The essence of Gradient Descent lies in its ability
to navigate the parameter space by following the direction of the steepest
descent, guided by the gradient of the function. The algorithm updates
the model parameters in small steps, guided by the gradient, to gradually
converge to the minimum value of the objective function, where the model
is most accurately fitted.

II. Motivation

The primary goal of Gradient Descent is to minimize an objective function
that is parameterized by a model’s parameters. This is achieved by itera-
tively updating the parameters in the opposite direction of the gradient of
the objective function with respect to those parameters.
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Recall:

Definition (Gradient)
A gradient is a vector that represents the direction and rate of the
steepest increase of a function. Define function f : Rn ! Rn be
differentiable. For any x ∈ Rn, the gradient of function f at x is defined
by

∇f(x1, x2, ..., xn) =

(
∂f

∂x1
,
∂f

∂x2
, ...,

∂f

∂xn

)
∈ Rn.
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Gradient Descent

Definition (Gradient Descent)
For a given objective function J(θ), where θ represents the parameters,
the update rule for Gradient Descent is

θ := θ − η∇θJ(θ).

• θ is the parameters.
• η > 0 is the learning rate, or stepsizes.
• ∇θJ(θ) is the direction or gradient of the cost function w.r.t θ.
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Choice of Stepsizes

The step size, also called the learning rate is a crucial parameter in gradient
descent algorithms. It determines the size of the steps taken towards the
minimum of the cost function in each iteration.

Let the stepsizes (αt)t∈N is crucial :
• If they are too large, then θt+1 is outside the domain, and the algorithm

may diverge.
• If they are too small, θt needs many time steps to move away from

θ0, and convergence can be slow.
What a good stepsize choice is depends on the properties of J .

1. Fixed schedule: αt generally depends on t through a simple equation,

∀t, αt = η for some η > 0, (Constant stepsize)
or ∀t, αt =

1
t+1 . (Monotonically decreasing stepsize)
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2. Exact line search: for any t, choose αt such that

J (θt − αt∇J(θt)) = min
a∈R

J (θt − a∇J(θt)) .

3. Backtracking line search: Choose αt such that J (θt − αt∇J(θt)) is
sufficiently smaller than J(θt). Implies, for αt small enough,

J (θt − αt∇J(θt)) ≈ J(θt)− αt||∇J(θt)||2.

Backtracking Line Search is generally a better and more practical option for
finding the step size in many machine learning and optimization problems
due to its adaptiveness and lower computational cost compared to exact
line search. If simplicity is the primary concern and the problem is well-
behaved, a fixed schedule with a well-tuned learning rate can work well.
Exact Line Search is only recommended in special cases where the objective
function is simple and can be solved exactly at each iteration.

KIMSIE PHAN Gradient Descent Algorithm



2. Exact line search: for any t, choose αt such that

J (θt − αt∇J(θt)) = min
a∈R

J (θt − a∇J(θt)) .

3. Backtracking line search: Choose αt such that J (θt − αt∇J(θt)) is
sufficiently smaller than J(θt). Implies, for αt small enough,

J (θt − αt∇J(θt)) ≈ J(θt)− αt||∇J(θt)||2.

Backtracking Line Search is generally a better and more practical option for
finding the step size in many machine learning and optimization problems
due to its adaptiveness and lower computational cost compared to exact
line search. If simplicity is the primary concern and the problem is well-
behaved, a fixed schedule with a well-tuned learning rate can work well.
Exact Line Search is only recommended in special cases where the objective
function is simple and can be solved exactly at each iteration.

KIMSIE PHAN Gradient Descent Algorithm



2. Exact line search: for any t, choose αt such that

J (θt − αt∇J(θt)) = min
a∈R

J (θt − a∇J(θt)) .

3. Backtracking line search: Choose αt such that J (θt − αt∇J(θt)) is
sufficiently smaller than J(θt). Implies, for αt small enough,

J (θt − αt∇J(θt)) ≈ J(θt)− αt||∇J(θt)||2.

Backtracking Line Search is generally a better and more practical option for
finding the step size in many machine learning and optimization problems
due to its adaptiveness and lower computational cost compared to exact
line search. If simplicity is the primary concern and the problem is well-
behaved, a fixed schedule with a well-tuned learning rate can work well.
Exact Line Search is only recommended in special cases where the objective
function is simple and can be solved exactly at each iteration.

KIMSIE PHAN Gradient Descent Algorithm



KIMSIE PHAN Gradient Descent Algorithm



KIMSIE PHAN Gradient Descent Algorithm



Lipschitz Continuous Gradient

If the objective function J(θ) has a Lipschitz continuous gradient, this
provides important information about the appropriate choice of the learning
rate αt for Gradient Descent.

Definition
For any lipschitz constant L > 0, we say that J is L-smooth if ∇J is
L-Lipschitz (Lipschitz continuous gradient), that is

∀x, y ∈ Rn, ||∇J(x)−∇J(y)|| ≤ L||x− y||.

Lemma
Let L > 0 be fixed. If J is L-smooth, then for any x, y ∈ Rn,

J(y) ≤ J(x) + ⟨∇J(x), y − x⟩+ L

2
||y − x||2.

where ⟨∇J(x), y − x⟩ =
∑n

i=1

(
∂J(x)
∂xi

(yi − xi)
)
.
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Proof.
Consider the Taylor expansion of J around the point x

J(y) = J(x) + ⟨∇J(x), y − x⟩+R(y),

where remainder R(y) =
∫ 1

0
(∇J(x+ t(y − x))−∇J(x))

T
(y − x)dt

Since J is L-smooth, then

||∇J(x+ t(y − x))−∇J(x)|| ≤ L||t(y − x)|| = Lt||y − x||.

We get ||R(y)|| ≤
∫ 1

0
Lt||y − x||2dt = L

2 ||y − x||2.
Thus,

J(y) ≤ J(x) + ⟨∇J(x), y − x⟩+ L

2
||y − x||2.
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Corollary
Let J be L-smooth, for some L > 0. We consider gradient descent with
constant stepsize αt =

1
L for all t. Then, for any t,

J(θt+1) ≤ J(θt)−
1

2L
||∇J(θt)||2.

Additionally assuming that J is lower bounded,
1 (J(θt))t∈N converges to a finite value.
2 ||∇J(θt)|| ! 0 as t ! ∞.

Summary: For an objective function with a Lipschitz continuous gradient,
the learning rate should be carefully chosen to be less than 2

L .
This ensures that the Gradient Descent algorithm converges effectively,
avoiding instability or divergence. Typically, a learning rate in the range
0 < α ≤ 1

L is considered safe and effective for achieving convergence.
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Definition (Convex function)
A function J is called a convex function if ∀x, y ∈ Rn, t ∈ [0, 1],

J((1− t)x+ ty) ≤ (1− t)J(x) + tJ(y).

If J is convex, any local minimum is also a global minimum. This means
that if gradient descent converges, it will converge to the global minimum
of J which is often the desired outcome in optimization problems. Without
convexity, gradient descent might converge to a local minimum instead,
which may not be the best solution.

Theorem
When J is differentiable, it is convex if and only if

∀x, y ∈ Rn, J(y) ≥ J(x) + ⟨∇J(x), y − x⟩.
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Proof.
(⇒) : Suppose that J is convex, then

J((1− t)x+ ty) ≤ (1− t)J(x) + tJ(y)

J(x+ t(y − x)) ≤ J(x) + t(J(y)− J(x))

J(y)− J(x) ≥ J(x+ t(y − x))− J(x)

t
, ∀t ∈ (0, 1]

J(y) ≥ J(x) + ⟨∇J(x), y − x⟩, as t ! 0

(⇐) : Let z = tx+ (1− t)y, then we have

J(x) ≥ J(z) + ⟨∇J(z), x− z⟩
J(y) ≥ J(z) + ⟨∇J(z), y − z⟩

Then,
tJ(y) + (1− t)J(x) ≥ J(z) + t⟨∇J(z), y − z⟩+ (1− t)⟨∇J(z), x− z⟩

≥ J(z) + ⟨∇J(z), ty − tz + (1− t)x+ tz − z⟩
≥ J(tx+ (1− t)y)
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Theorem
Let J be convex and L-smooth, for some L > 0. We consider gradient
descent with constant stepsize : αt =

1
L for all t. Then, for any t ∈ N,

J(xt)− J(x∗) ≤
2L||x0 − x∗||2

t+ 4
.

where x∗ is a minimizer of J such that J(x∗) = minx∈Rn J(x).
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Proof.
Let t be fixed. Since J is convex, by above theorem, we get

J(x∗) ≥ J(xt) + ⟨∇J(xt), x∗ − xt⟩ = J(xt) + L⟨xt − xt+1, x∗ − xt⟩. (1)

And since x∗ is minimizer, by using L-smoothness

J(x∗) ≤ J(xt+1)

≤ J(xt)−
1

2L
||∇J(xt)||2

= J(xt)−
L

2
||xt+1 − xt||2, (2)

From (1) and (2),

J(xt) + L⟨xt − xt+1, x∗ − xt⟩ ≤ J(x∗) ≤ J(xt)− L
2 ||xt+1 − xt||2

2⟨xt − xt+1, x∗ − xt⟩+ ||xt+1 − xt||2 ≤ 0
||x∗ − xt+1||2 ≤ ||x∗ − xt||2
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Proof.
Now by above corollary,

J(xt+1)− J(x∗) ≤ J(xt)− J(x∗)−
1

2L
||∇J(xt)||2., (3)

By using Cauchy-schwarz, we can find

||∇J(xt)|| ≥
J(xt)− J(x∗)

||x0 − x∗||

J(xt+1)− J(x∗) ≤ J(xt)− J(x∗)−
1

2L

(J(xt)− J(x∗))
2

||x0 − x∗||2

1

J(xt+1)− J(x∗)
≥ 1

J(xt)− J(x∗)
+

1

2L||x0 − x∗||2

1

J(xt)− J(x∗)
≥ 1

J(x0)− J(x∗)
+

1

2L||x0 − x∗||2
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||∇J(xt)|| ≥
J(xt)− J(x∗)

||x0 − x∗||

J(xt+1)− J(x∗) ≤ J(xt)− J(x∗)−
1

2L

(J(xt)− J(x∗))
2

||x0 − x∗||2

1

J(xt+1)− J(x∗)
≥ 1

J(xt)− J(x∗)
+

1

2L||x0 − x∗||2

1

J(xt)− J(x∗)
≥ 1

J(x0)− J(x∗)
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Proof.
Since,

J(x0)− J(x∗) ≤
L||x0 − x∗||2

2

Therefore,
J(xt)− J(x∗) ≤

2L||x0 − x∗||2

t+ 4
.

Summary: The theorem provides a rigorous guarantee of how quickly
gradient descent converges to the minimum for convex and smooth func-
tions. It guides the choice of step size, highlights the importance of initial
conditions, and serves as a critical result for optimizing machine learning
models and other applications in convex optimization.
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Application to Logistic Regression

Gradient descent is an optimization algorithm used to minimize the cost
function (also known as the loss function) in machine learning models. In
logistic regression, the cost function is based on the difference between the
predicted probabilities and the actual labels. The aim is to minimize this
difference and find the best parameters that maximize the models accuracy.

By using gradient descent to minimize the cost function of a machine
learning model, we can find the best set of model parameters for accurate
predictions. This means that it helps us find the best values for our models
parameters so that our model can make accurate predictions.
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The cost function for logistic regression is :

J(θ) = − 1

m

m∑
i=1

[
y(i) log(hθ(x

(i))) + (1− y(i)) log(1− hθ(x
(i)))

]
where:

hθ(x
(i)) = 1

1+e−θT x(i) is the hypothesis function (sigmoid function).

x(i) is the feature vector for the i-th training.
y(i) is the corresponding label.

Now, compute the gradient of the cost function w.r.t x, we get

[∇J(θ)]j =
∂

∂θj
J(θ) =

1

m

m∑
i=1

(
hθ(x

(i))− y(i)
)
x
(i)
j

Then the parameters are updated using Gradient Descent as:

θ
(t+1)
j = θ

(t)
j − α [∇J(θ)]j , t iterations

Finally, the process is repeated until convergence, leading to the optimal
parameter that minimize the logistic loss and reult in a well-fitted model.
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Algorithm: Logistic Regression with
Gradient Descent

Input:
Training data {(x(i), y(i))}mi=1 where x(i) ∈ Rn and y(i) ∈ {0, 1}.
Learning rate α and number of iteration n.

step 1: Initialize θ = [θ0, θ1, ..., θp] to small random values or zeros.
step 2: For iteration t from 1 to n:

compute hθj (x
(i)) = 1

1+e
−θT

j
x(i)

compute ∇ [J(θ)]j =
1
m

∑m
i=1

(
hθj (x

(i))− y(i)
)
x
(i)
j

update θ
(t+1)
j = θ

(t)
j − α [∇J(θ)]j

step 3: After n iterations or convergence, return the optimized parameter
vector θ.
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LR with GD in C++
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Appendix

Stochastic Gradient Descent (SGD): Instead of using the full dataset,
SGD operates on a small random subset (batch) of the data at each iter-
ation. It provides an approximation of the gradient:

Faster iterations: Since SGD only uses a small batch of data, it
updates weights more frequently, speeding up learning.
Noise and variance: Due to the smaller batches, the gradients are
noisier, leading to faster exploration of the parameter space but
more instability in updates.
Better generalization: The inherent noise in SGD’s updates allows it
to escape local minima and potentially find better solutions for
generalization.

Addition, in machine learning, different optimization algorithms are used to
improve the efficiency and performance of training models. Some popular
gradient-based optimization methods, specifically focusing on Momentum
methods, Adagrad, and Adam, all of which are variations of Gradient De-
scent.
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